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We derive an exact relation for 77 scattering which yields the real parts of the 77 partial wave am-
plitudes al( (s) in the region 4m% <£s < GOm% , given i) the I = 0 and the I = 2 S wave scattering lengths
and ii) the I1m (I)(s) for 4m% < s < =, where s denotes the centre-of-mass energy, ! the angular mo-
me?tum and I the 1sotopic spin. It also provides i) a system of integral equations to determine the
alu (s) for 4"’721 <s Slem%, 16m,2r < s < oo, and ii) necessary and sufficient conditions for crossing sym-
metry expressed in terms of the physical region partial wave amplitudes only.

LetF(I )(s, 1) denote the 77 scattering amplitude with isotopic spin I in the s channel, normalized
such that

d (D (7) 2
e - IEA »

where s and ¢ denote respectively the squares of the centre-of -mass energy and the centre-of-mass
momentum transfer, The partial wave amplitudes al(I )(s) are defined by

(D(s,p = ¥5 5 I L
F(s, 1) = lzZ%)(zzu)[z(zg )(s)]pl(1+2k2 : )

where % is the centre-of-mass momentum, and "the identical particle factor™ 2 in the square bracket
is introduced because of the identity of the pions to obtain the simple unitarity relation,

Im al(I)(s) = [a(ll)(s)| 2 , 4<s5 <186 | (3)

where we use units such that the pion mass is unity. The optical theorem reads

(n, , 81 < (I
PO =2 g()) (21+1)Im a3 ’(s) . (4)
The S wave scattering lengths ago) and a(()z) are defined by
(n
N _ . % S g
a, —klgrb —5 = iF\V/(4,0). (5)

The F(I )(s, t) satisfy the crossing relations written in matrix notation,

F(s, 8} = Cg F(t, 8) = Cpyy F(s,4) = Cgy Flu, 1), (6)

where
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FO, 5
Fis,ty= Fs,0 ], )
FPs, 0
13 1 5/3 1 0 0 /3 -1 5/3
cst= 1/3 1/2 -5/6 . Ctu= 0o -1 0}, Csy = -1/3 1/2 5/6| , (8)
1/3 -1/2 1/6_ 0 01 1/3 1/2 1/6‘
and
u=(4 -s -'t). 9

Calculation of Re a(l)(s), 4 <s<60. Jin and Martin {1] have established from axiomatic field theory
fixed ¢ dispersion relations with two subtractions for F(I )(s, t) for |t| < 4, We may write them in ma-
trix notation as

1,7 ds' s? u? ,
Flst) = Cor[ O + (5= p1)] + S (i ms t omu O alsn . (10)

where the A(I )(s', t) are absorptive parts defined by

ISP E TR (N g0 2
A, p = S'-4z§o (21+1)[2 Im a\ (s )]pl(l+s,_4), (11)
within the large Lehmann-Martin ellipse [2], and the subtraction constants C(¢), D(t) are of the form
Oy 0
crr=1 0o |, por=dYe) . (12)
Lc@ . 0

due to crossing symmetry. The main remark we shall make here is that the ¢ dependence of the sub-
traction constants C(f) and D(¢) can be extracted using crossing symmetry at a fixed value of s, say

s = 0, so as to obtain a relation involving only experimentally accessible quantities. Thus, substituting
eq. (10) into the equation

E(O,t) = Cstf(t! 0) ’ (13)

to express C(f) and D(¢) in terms of C(0) and D(0) and eliminating the latter in favour of the S wave
scattering lengths given by eq. (5), we obtain

o0
Fis,t) = g1(s,8) go +/ ds'[gals,t,s) A(s",0) + ga(s,t,s)A(s', 8], (14)
4
where
g1(s,8) =5(1-Cg,) + {Cgp-Cg,,) + 4Cgyy, (15)
14Cy 9g.t-41-Chp 1 17 2 (4-0%Cq, 4+4(4-0)Cgy-
go(s,t,8") =Cgy 2t -3 9 )X;';,_z[sv_t*' s -(4-5 ST 4 J, (16)
nwae 1 s2 u? 4-82 {Csu*l 254¢-4Csy-1 1
gs(s’t’s)—ns.g[sv_s‘fsv_u Cou-s-@-n 2 * t-4 2 |’ (1)

and
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(0)

a

[0}
go=10 |. (18)
a?

Because of the Jin-Martin result [1] and the Froissart bound [3] for £ < 0, eq. (14) holds for all real
values of ¢ < 4. Now, the a(I)(s) for s > 4 are calculated from eq. (14) to y1eld the relation

z%(l)(s)%s— —1+—(—~U asy(x) Z) s, 255 1 -xall)

1 (-] 1 o0
+4 [ dxPy(w) [ dst,—sz >@ersl) X gg”' %(14) s"Im a(”(s')
0 4 $-%p=0 r=0,1,2

r 6, 458 (-0, 90t oo B, (14 GRS 19)

where the gzl-l , ©1=1,2,3, are the matrix elements of the g; defined in egs. (15)-(17). For the validity
of eq. (19) we have only to check that the partial wave expansion for A(s',#), eq. (11), used to obtain
eq. (19), is valid for s' = (4, %), = (2 - 35, 0). Martin [2] has shown that the expansion (11) converges
for s' = (4, <) for t = (-28,4). Hence, eq. (19) enables us to calculate Re (1)(3) for 4 <s < 60 using the
experimental values of the S wave scattering lengths a(o), a?) and the ex%erimental values of the
Im (I)(s ), for s' =4, These values can then be check%d against the experimental values of Re a( )(s)
from a phase-shift analysis, thus providing a test of analyticity, crossing and unitarity (used in phase-
shift analysis).

We may remark here that the amplitude (14) has s-# crossing symmetry built in and hence complete
crossing symmetry would be satisfied if eq. (14) as well as the relation

.F(s: t) = Ctu ,-F(S:u)
is satisfied. The above relation together with eq. (14) yield the crossing conditions

f ds'[{ga(s,t, s} - Ctugz(s,u, SN} A(s',0) + {g3(s,%,8') 4(s',1) - Cy, g3(s,u,8") A{s", w}] =0, (20)
4

valid for [¢| and |#| < 4. These relations are equivalent to, but somewhat simpler than the crossing
conditions of Wanders [4] and Roskies [5]. Eqgs. (14) and (20) together, are necessary and sufficient
conditions for complete crossing symmetry; both of them can be checked directly against experiment as
explained.

Integral equations for a(l)(s) ford < 16 Eq. (19) expresses Re a( )(s) for 4 <s <60 in terms of
al?, af?) and the Im al')(s") for I' = (0 w), I' = (0,1,2), and s'> 4. When this value is substituted into

the unitarity equation
tm (D) = [m a{D(e)]? + [Re D)2, 4<s<16, @D

we obtain a set of coupled non-linear singular integral equatlons for Im a(I )(s) in the interval 4 <s <16,
with the driving terms involving ago) a'? and the Im al (s) for s = 16, These integral equations re-
semble in a mathematical sense those Studied recently’by Atkinson [6} and Kupsch [7]; our equations
are, however, different because we do not assume the Mandelstam representation. It would be inter-
esting if the solution to our equations could be shown to be unique, because it would provide a "con-
structive proof" of the result that a knowledge of a(o) ac()z), and the Im a(l (s) for s = 16, fixes entirely
the scattering amplitude *.

* This result is very similar to a result obtained in the framework of the Mandelstam representation by Martin 8],
except for the fact that we need to know also the S wave scattering lengths in the present work.
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Concluding remarks

i) Equation (19) is not equivalent to a partial wave dispersion relation; for example, cut-plane ana-
lyticity of a;(s) needed for the dispersion relations is not proved at present from the assumptions of
axiomatic field theory {2] and does nof follow from our equations because of the limited domain of con-
vergence of the partial wave expansion for A(s’, ).

ii) Further practical and theoretical applications of the present equations and their comparison with
other pion-pion equations are discussed in a parallel work by Basdevant, Le Guillou and Navelet.

I am indebted to A. P. Balachandran for collaboration in the early stages of this work and to J. L.
Basdevant, J.C. Le Guillou and H. Navelet, whose work and encouragement have provided the necessary
inspiration.
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